GRAPHITE: Generating Automatic Physical Examples for Machine-Learning Attacks on Computer Vision Systems

Ryan Feng¹, Neal Mangaokar¹, Jiefeng Chen², Earlence Fernandes², Somesh Jha², Atul Prakash¹

¹University of Michigan, ²University of Wisconsin

Euro S&P 2022

Robust Physical Perturbation Attacks

- Physical attacks such as RP₂ [1] enable sticker attacks on physical objects
- Key idea: physical attacks are more practical
 - Easier to attack a real system, harder to defend
- Limitations: current methods still require
 - Manual mask experimentation
 - White-box access to model weights / architecture

[1] K. Eykholt, I. Evtimov, E. Fernandes, B. Li, A. Rahmati, C. Xiao, A. Prakash, T. Kohno, D. Song, "Robust Physical-World Attacks on Deep Learning Models," CVPR 2018.

Motivation: A Framework for Practical Attacks

- Goal: Generate Practical Attacks
 - Automatically generate masks
 - Apply attacks as *physical* stickers
 - Can work with just *hard-label* access

 Automatic attack generation tools can assist with adversarial testing and defense design

GRAPHITE Framework

$$\operatorname*{argmin}_{\delta,M} \lambda \cdot ||M||_0 - \mathbb{E}_{t \sim T} \left[F \left(t(x + M \cdot \delta) \right) = y_{tar} \right]$$

Small mask size

High transform-robustness

x: Input image

 y_{tar} : Target label

- δ : Perturbation
- F: Model
- M: Mask (Patch Area)
- T: Transformation Distribution
- $\lambda :$ Weight parameter

Algorithm 1 General GRAPHITE FrameworkInput: Victim Image x, Target Image x_{tar} , Initial Mask M_{init} , Model F, Target Label y_{tar} Output: Attacked Image A, Mask M, Perturbation δ 1: $M \leftarrow M_{init}$ 2: $\delta, g \leftarrow INIT_PERT_+_GRAD(x, x_{tar}, M, F, y_{tar})$ 3: while not done do4: $S \leftarrow SELECT_PIXELS(x, x_{tar}, M, \delta, y_{tar}, g)$ 5: $M \leftarrow REMOVE_PIXELS(M, S)$ 6: $A, \delta, g \leftarrow ATTACK(x, x_{tar}, M, \delta_{init}, F, y_{tar})$ 7: $A, \delta \leftarrow$ Last Successful Attack

Key idea: jointly optimize mask size and transform-robustness

White-box Version of GRAPHITE

- Start with C&W ℓ_0 attack [1]
 - Alternates between C&W ℓ_2 attack [1] and removing the pixel with least impact

- Replace the C&W ℓ_2 attack with an EoT PGD attack [2, 3]
- Avg. 78% transform-robustness, 9% mask size

N. Carlini and D. Wagner, "Towards evaluating the robustness of neural networks," IEEE S&P 2017.
 A. Athalye, L. Engstrom, A. Ilyas, and K. Kwok, "Synthesizing robust adversarial examples," ICML 2018.
 A. Madry, A. Makelov, L. Schmidt, D. Tsipras, A. Vladu, "Towards Deep Learning Models Resistant to Adversarial Attacks," ICLR 2018.

White-box GRAPHITE attacks can be generated.

What about **black-box** (hard-label) GRAPHITE attacks, where only the top-1 prediction label is available (no gradients, no probabilities)?

Hard-label Baselines

- Simple combinations of C&W ℓ_0 [2], EoT [3], and OPT Attack [4] poor
 - Issues included: Poor transform-robustness, large masks, query inefficiency

- Pixel ordering by impact as in C&W ℓ_0 [2] breaks down without gradients
- Distance minimizing hard-label attacks query-inefficient with EoT

[1] K. Eykholt, I. Evtimov, E. Fernandes, B. Li, A. Rahmati, C. Xiao, A. Prakash, T. Kohno, D. Song, "Robust Physical-World Attacks on Deep Learning Models," CVPR 2018. [2] N. Carlini and D. Wagner, "Towards evaluating the robustness of neural networks," IEEE S&P 2017.

[3] A. Athalye, L. Engstrom, A. Ilyas, and K. Kwok, "Synthesizing robust adversarial examples," ICML 2018.

[4] M. Cheng, T. Le, P.-Y. Chen, J. Yi, H. Zhang, and C.-J. Hsieh, "Query-efficient hard-label black-box attack: An optimization based approach," ICLR 2019

Hard-label Version of GRAPHITE

• Simplify to a two-step optimization – Mask Generation and Boosting

$$\underset{M}{\operatorname{argmin}} \lambda \cdot ||M||_{0} - \mathbb{E}_{t \sim T} \left[F \left(t(x + M \cdot \delta_{tar}) \right) = y_{tar} \right] \qquad \operatorname{argmax}_{\delta} \quad \mathbb{E}_{t \sim T} \left[F \left(t(x + M \cdot \delta) \right) = y_{tar} \right]$$
s.t.
$$\mathbb{E}_{t \sim T} \left[F \left(t(x + M \cdot \delta_{tar}) \right) = y_{tar} \right] \ge tr_{lo}$$

Target Image (x_{tar})

Physical World Results

TABLE 8. GTSRB FIELD TEST RESULTS. PHYSICAL ROBUSTNESS RESULTS ARE CALCULATED OVER 5 PICTURES EACH AT THE FOLLOWING SPOTS: 5 FT \times {0°, 15°, 30°, 45°}, 10 FT \times {0°, 15°, 30°}, 15 FT \times {0°, 15°}, 20 FT \times {0°, 15°}, 25 FT, 30 FT, 40 FT. EACH EXAMPLE WAS TESTED 3 TIMES: OUTDOORS, INDOORS WITH INDOOR LIGHTS TURNED OFF, AND INDOORS WITH INDOOR LIGHTS TURNED ON.

Victim	Target	Digital GRAPHITE attack	Physical GRAPHITE attack (outdoors)	Dig. TR (100 xforms)	Phys. TR (Indoors, lights off)	Phys. TR (Indoors, lights on)	Phys. TR (Outdoors)
STOP	30	STOP	STOP	86%	92.9%	94.3%	100%
STOP	Â	STOP	STOP	79%	97.1%	85.7%	100%

Tuning GRAPHITE

- 3 parameters to trade off: query count, transform-robustness, and mask size
- In the extreme, we can find attacks with as few as 500 queries with lower transform-robustness

Attacking PatchGuard

- GRAPHITE can defeat PatchGuard [1]
 - Tested on 100 CIFAR-10 examples
 - Avg. Transform-robustness: 68%
 - Avg. Query Count: 155.8k
 - Avg. Mask size: 193.81 pixels
- Example on right: 10 pixel attack to misclassify a dog as a cat

[1] C. Xiang, A. N. Bhagoji, V. Sehwag, and P. Mittal, "PatchGuard: A Provably Robust Defense against Adversarial Patches via Small Receptive Fields and Masking," USENIX 2021.

Conclusion

• GRAPHITE: first automatic physical hard-label attack

• We hope GRAPHITE guides future defense work against practical attacks

• Code available to try it out: https://github.com/ryan-feng/GRAPHITE

Thank you!

- Contact Information
 - Ryan Feng
 - <u>rtfeng@umich.edu</u>
 - <u>http://www-personal.umich.edu/~rtfeng/</u>
 - <u>https://twitter.com/ryantfeng</u>

- Paper Links
 - <u>https://arxiv.org/abs/2002.07088</u>
 - <u>https://github.com/ryan-feng/GRAPHITE</u>

